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1. Introduction

The production of states by a hard scattering QCD process in hadron collision is described

by the parton model which separates it into perturbative (calculable) process and a soft

non-perturbative piece. Consider the production of a top quark pair via the partonic

process gg → tt. There are many gluons present in the process but the only top quarks

arise from the hard scatter itself. Top quarks can also be produced singly via the process

gb→ W−t. In order for this to occur the incoming bottom quark is viewed as a constituent

(parton) of the incoming hadron. Alternatively one could begin with a two gluon initial

state and consider the hard process as gg → tbW−. These two processes cannot be added as

the QCD approximation that produces the b parton in the first case is partially accounted

for by the latter process. A careful separation of “hard” and “soft” components is needed

so that a consistent result can be obtained. The rest of this paper demonstrates such a

separation in form of a Monte-Carlo algorithm which can be implemented inside a Monte-

Carlo event generator. The rest of this section is concerned with introducing the formalism.

Section 2 shows explicitly how to relate processes with one more (or less) parton in the hard

scattering with a Monte-Carlo algorithm. Section 3 presents some explicit examples of the

implementation of this formalism in a Monte-Carlo generator. Finally some conclusions

are drawn.
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The QCD-based parton model is based on the factorization theorems [1 – 5] according

to which the squared amplitude for a process A,B→ X can be decomposed into a “hard”

and “soft” (or alternatively denoted “short” and “long distance”) parts:

|MAB→X |2 =
∑

a,b

fa/A ⊗Hab→X ⊗ fb/B

=
∑

a,b

∫
dξa
ξa

∫
dξb
ξb
fa/A(ξa, µF ) fb/B(ξb, µF )Hab→X(ξa, ξb, µF . . .), (1.1)

with a,b labeling the incoming partons which have to be summed over and H(ab → X)

denoting the hard (’short time’) part of the squared amplitude. The soft contributions

are absorbed into the parton distribution functions fi/I(ξi, µF) with µF being the (factor-

ization) scale at which the two parts were separated.1 More explicitly, the above theorem

states that the collinear (mass) singularities have to be isolated/subtracted from the hard

process amplitudes and reabsorbed into the parton distribution functions [3 – 7]; all other

singularities (UV, soft IR) appearing in the perturbative calculation of the hard process

either cancel or are handled by renormalization procedures. It has to be stressed at this

point that the renormalization/regularization scheme used in subtracting the UV singular-

ities in turn dictates the precise form of the evolution (DGLAP) equations of the parton

distribution functions [1, 3]

d

d lnµ2
F

fi/I(z, µF ) =
αs(µF )

2π

∑

j

1∫

z

dξ

ξ
Pj→i(

z

ξ
, αs(µF )) fj/I(ξ, µF ), (1.2)

where Pj→i denote the usual DGLAP evolution kernels and I describes either a parton or

a hadron.

An elegant way of isolating the mass singularities in perturbative calculations is found

by observing that the pQCD squared amplitude |Mab→X|2 involving initial state partons

a,b is subject to the same factorization theorem:

|Mab→X |2 =
∑

c,d

fc/a ⊗Hcd→X ⊗ fd/b, (1.3)

with the fi/j representing the distribution function of the parton i inside the parton j.

The above equation holds to any order in perturbation theory. Consequently, since the

|Mab→X |2 can be calculated to any order by using the Feynman rules and the prescriptions

for calculating the fi/j to high orders in αs are also well established [1, 22, 23] one can use

the procedure of [5 – 7] to extract the Hcd→X to the chosen order.

At zero-th order in αs:

f
(0)
i/j (ξ) = δijδ(ξ − 1) (1.4)

and hence:

|M(0)
ab→X |2 = H

(0)
ab→X . (1.5)

1In case all partons are considered massless the flux factor in the partonic cross-section expression is

ŝ = ξaξb(2s) with (2s) being the hadronic flux and the eq. 1.1 results in the common expression σAB→X =R
dξa

R
dξbfa/A(ξa, µF) fb/B(ξb, µF)σhard

ab→X(ŝ, µF)
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PA PB

pa pb

X

fa/A fb/B

Hab

+

PA PB

pa
pb

pc

pc̄

X - c̄

fa/A
fb/B

fc/a

Hcb

+

PA PB

pa pb

pd

pd̄

X - d̄

fa/A fb/B

Had

fd/b

Figure 1: The diagrammatic representation of the method applied in isolating the soft (collinear)

terms in propagators corresponding to virtual particles pc and/or pd when calculating the

|M(1)
ab→X |2. Note that in factorization theorem the particles incoming into the hard part of the

probability amplitude are considered to be on-shell.

Subsequently, at first order in αs:

fi/j(ξ) = f
(0)
i/j (ξ) + f

(1)
i/j (ξ), (1.6)

and thus at this order:

|M(1)
ab→X |2 = H

(1)
ab→X +

∑

c

f
(1)
c/a ⊗H

(0)
cb→X +

∑

d

H
(0)
ad→X ⊗ f

(1)
d/b, (1.7)

where formally the virtuality µ2 of the particles c or d (which is in turn proportional to the

(pT )2 of the particles c̄ or d̄, see figure 1) is used as the factorization measure with the limit

µ2
F: The hard part H

(1)
ab→X includes the cases µ2 ≥ µ2

F and the soft one the cases µ2 ≤ µ2
F.

Note that in the above equation, the phase space integration over c̄/d̄ particles has already

been performed (resulting in the convolution integral) and thus the phase space for the

final state particles for the soft part formally involves one less particle.

The above equation can be inverted to give:

H
(1)
ab→X = |M(1)

ab→X |2 −
∑

c

f
(1)
c/a ⊗ |M

(0)
cb→X |2 −

∑

d

|M(0)
ad→X |2 ⊗ f

(1)
d/b (1.8)

This can be extended to higher orders in perturbation theory. It should be emphasized that

the presence of the subtraction terms in the above eq. 1.8 prevents double counting when

performing the perturbative cross-section calculation since the collinear effects present in

the |M(1)
ab→X|2 are removed and re-summed in the parton distribution functions fa/A of the

initial hadrons.

After the perturbative expansion of Hab→X = H
(0)
ab→X +H

(1)
ab→X , given by eq. 1.5 and

eq. 1.8, is inserted into the cross-section expression (eq. 1.1) one thus obtains the formula:

|MAB→X |2 = |M(0)
AB→X |2 + |M(1)

AB→X |2 − |MAB→X |2s , (1.9)

with the subtraction terms given by:

|MAB→X |2s =
∑

a,b

fa/A⊗
∑

c

f
(1)
c/a⊗H

(0)
cb→X⊗fb/B+

∑

a,b

fa/A⊗
∑

d

H
(0)
ad→X⊗f

(1)
d/b⊗fb/B. (1.10)

– 3 –
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For further discussion on the ’double counting’ issues it is illuminating to calculate

the fi/j at scale µF up to the order of αs. One starts by writing down the perturbative

expansion of the evolution kernels in the DGLAP equations:

Pj→i(ξ, αs(µF )) = P
(0)
j→i(ξ) +

(
αs(µF )

2π

)
P

(1)
j→i(ξ) + · · · (1.11)

and observing that the evolution increases the order of f
(n)
i/j by one. This can explicitly

be seen by inserting the zero-th order f
(0)
i/j of eq. 1.4 into the eq. 1.6; using this together

with eq. 1.11 in eq. 1.2, and increasing the factorization scale from the lowest kinematic

limit (mass m of the particle i) to the scale µF , i.e. integrating over the range [m2, µ2
F] and

keeping only the terms up to the order of αs:

fi/j(ξ, µF ) = f
(0)
i/j (ξ) +

αs(µF )

2π
P

(0)
j→i(ξ) ln

(
µ2
F

m2

)
. (1.12)

The above expression matches the perturbative expansion given by eq. 1.6 with the second

term identified as the f
(1)
i/j parton distribution function.

While the expression of eq. 1.9 can subsequently be used for estimating the total cross-

section of a given process one should take further steps when dealing with the estimation of

the differential cross-sections or (equivalently) Monte-Carlo simulation. In a Monte-Carlo

simulation the DGLAP parton evolution, re-summed in the parton density functions fi/I
(c.f. eq. 1.2), is made explicit by evolving the factorization scale from its initial value µ0

to the lowest kinematic limit (or an imposed cutoff). The probability that the particle

c will be un-resolved into a particle a (or equivalently, that a particle a will branch and

produce the particle c and an additional spectator particle) is given by the Sudakov term

(see e.g. [15]):

Sa = exp




−

µ2
0∫

µ2

dµ′2

µ′2
αs(µ

′2)

2π
×
∑

c

1∫

ξc

dz

z
Pa→c(z)

fa/I(
ξc
z , µ

′2)

fc/I(ξc, µ′2)




. (1.13)

At each evolution step (branching) the number of particles is increased by one and its

contribution to the differential cross-section in terms of αs is also increased by one. The

described procedure is commonly known as (initial state) parton showering. In this paper

the evolving scale µ2 is identified with the virtuality of the incoming particle c in order to

follow the procedure described by Collins et al. [9 – 12] 2.

The (next-to-leading order) subtraction terms of Equation 1.10 thus compensate for

the first branching in the backward evolution of the incoming partons participating in the

(leading order) term H
(0)
ab→X . Note that in order to match the subtraction terms in eq. 1.8

2Other choices of relating the evolution scale µ2 to the particle kinematics is possible, for a nice overview

see e.g. [14]. In sophisticated Monte-Carlo implementations of the showering algorithms (c.f. [15, 16] ) the

choice of the argument of αs(µ
′2) is also changed from (µ′2) to other values (depending on z as well as µ′2

in order to incorporate the results of NLO computations. In this paper such a substitution in not made in

order to follow the explicit procedure derived by Collins et al. [9 – 12].

– 4 –



J
H
E
P
0
9
(
2
0
0
6
)
0
3
3

with the first-order matrix element, the fraction ξc (or equivalently ξd) of the evolved parton

is kept constant and the virtuality is decreased corresponding to a ’backward’ evolution in

time from the starting point of virtuality µ2
0 of H

(0)
ab→X. to the virtuality µ2 of H

(1)
ab→X (c.f.

figure 1). Writing the expressions of equation 1.10 in differential form in µ2 one thus gets

for the first term:

|MAB→X |2s =
dµ2

µ2

∑

a,b,c

∫
dξa
ξa

∫
dξb
ξb

∫
dξc
ξc

{
fa/A(ξa, µ

2
0)
αs(µ

2
0)

2π
P (0)
a→c

(
ξc
ξa

)

H
(0)
cb→X(ξc, ξb) fb/B(ξb, µ

2
0) + · · ·

}
(1.14)

and an equivalent expression can be obtained for the second term of eq. 1.10. Using again

the eq. 1.5, multiplying by the flux factor 1/2
√
λ(s,m2

A,m
2
B), given by the Lorentz invariant

function:

λ(s,m2
1,m

2
2) = (s− (m1 +m2)2)(s− (m1 −m2)2) (1.15)

and integrating over the final state n-particle phase space denoted by
∫

dΦX, one obtains

the first subtraction term:

dσ
(0)
s1 (AB → X)

dξadξbdµ2dξcdφ
=

∑

a,b,c

θ(µ2
0 − µ2)

2
√
λ(s,m2

A,m
2
B)ξcξb

αs(µ
2
0)

4π2 µ2

1

ξa
fa/A(ξa, µ

2
0)P (0)

a→c

(
ξc
ξa

)
fb/B(ξb, µ

2
0)×

×
∫
|M(0)

cb→X |2(ξc, ξb)dΦX−c̄ (1.16)

and equivalently also the second subtraction term by appropriate replacements a→ b and

c→ d. The two derived equations correspond to the expressions obtained by Chen, Collins

et al. [9 – 12], derived by the Sudakov exponent expansion.

In addition to writing the cross-sections in differential form, the integration over an

angle φ was introduced, where the angle φ represents the azimuthal angle of the spectator

particle c̄ or d̄ and is in effect a dummy quantity which nevertheless has to be sampled

in a Monte-Carlo simulation procedure. The notation dΦX−c̄ denotes that the final space

integral does not contain the spectator particles c̄ or d̄ since they are already accounted

for in the (dξ/ξ)dµ2dφ differential (see e.g. [1]). In contrast the first order matrix element

of equation 1.8 is integrated over the full phase space X:

dσ(1)(AB → X)

dxadxb
=

∑

a,b

1

2
√
λ(s,m2

A,m
2
B)xaxb

fa/A(xa, µ
2
0) fb/B(xb, µ

2
0)

∫
|M(1)

ab→X |2(xa, xb)dΦX , (1.17)

whereby the outstanding issue is the kinematic translation between n − 1 (X − c̄) and n

(X) particle kinematics. Furthermore, one cannot simply equate the variables ξa,b and xa,b,

– 5 –
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since e.g. in eq. 1.16 the ξc,b terms imply that the incoming particles c and b are on shell in

the matrix element calculation while in eq. 1.17 in contrast the particle a (as the ’parent’

of particle c) is the on-shell one.

The mapping of the kinematic quantities between between the expressions of order

αS (i.e. the pQCD derived expression of eq. 1.17 and the (showering) subtraction terms of

eq. 1.16 ) needs a consistent and possibly a formally correct definition. In order to achieve

this the prescription developed by Collins et al. of how to merge parton-shower calculations

with the leading (fixed) order perturbative pQCD calculations on the level of Monte-Carlo

simulations [9 – 12] was implemented, which has been explicitly shown to reproduce the

NLO M̄S result for a set of processes.

Another outstanding issue is that in case of heavy quarks participating as the initial

state partons the (commonly used) approximation of treating the incoming particles as

massless can lead to a significant error. This fact, as well as the the solution in terms of

consistent treatment of the kinematics in terms of light-cone variables, has been demon-

strated in the ACOT prescriptons of how to consistently introduce the factorization in

case of non-negligible masses of the colliding partons (e.g. heavy quarks) [6, 7]. The ACOT

prescription has in this paper been introduced in the formalism of Monte-Carlo simulation

by modifying the prescription of Collins et al. accordingly.

In the Monte-Carlo generation steps one thus has to produce two classes of events; one

class is derived from the leading order process with one branching produced by Sudakov

parton showering and the second class are events produced from the next-to-leading or-

der hard process calculation (i.e. the pQCD calculation with the appropriate subtraction

terms).

2. Kinematic issues

2.1 Phase-Space transformation

The aim of this section is to derive generic expressions that transform the kinematics from

the ’hard’ to the ’soft’ (or showering) n-particle system, i.e. split the ’hard’ n-particle

phase space involving heavy quarks into n − 1 ’hard’ ⊕1 ’soft’ particle phase space in

order to perform appropriate MC simulation (c.f. figure 2). As already stated the existing

prescriptions deal either with massive particles [6, 7] on the level of integrated cross-sections

or with explicit Monte-Carlo algorithms involving light (∼ massless) particles (e.g. [26, 15,

11, 13, 14] ) while no generic combination of the two algorithms is available.

In order to accommodate the particle masses it is convenient to work in light-cone

coordinates pµ = (p+, ~pT , p−) where p± = 1√
2
(p0 ± p3) and the remaining two coordinates

are considered ’transverse’ ~pT . The kinematic prescription of relating the hard n-particle

kinematics to the soft n− 1 case is as follows:

1. Incoming hadron A is moving in the z direction and hadron B in the −z direction,

carrying momenta PA and PB with the center-of-mass energy
√

s, whereby one can

neglect the hadron masses at LHC energies.

– 6 –
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pa

pb

pn

ΦX(sn = (kn−1 + pn)2)

kn−1; k2

n−1
= sn−1

qn−1; q2

n−1
= tn−1

Φn−1

Figure 2: The diagrammatic representation of the method applied in translating a t-channel

(space-like) split going from n to n− 1 particle phase space.

2. The incoming partons with momenta pa and pb have the momentum fractions p+
a =

xaP+
A and p−b = xbP−B relative to the parent hadrons and the center-of-mass energy√

sn.

3. The split propagator (i.e. particle c) virtuality p2
c = (pa − pc̄)2 = tn−1 (c.f. figure 2)

gives the µ2 value from tn−1 −m2
c̄ = −µ2. (c.f. eq. 1.16).

4. The scale correspondence is given by sn−1 = µ2
0 (c.f. eq. 1.16).

5. All incoming and outgoing particles (partons) are on mass shell.

6. The splitting parameter of the evolution kernel is z = ξc
ξa

(already used in eq. 1.16).

7. The rapidity y = 1
2 ln

(
k+

n−1

k−n−1

)
of the subsystem (c.f. figure 2) is preserved in the

translation.

In order to further relate the n and n−1 particle phase space for hard and soft interpretation

one can use the recursive t-channel splitting relation [17, 19]:

Φn(sn,m1,m2, . . . ,mn) =

=

(
√
sn−mn)2∫

(
Pn−1
i=1 mi)2

dsn−1

4
√
λ(sn,m2

a,m
2
b)

2π∫

0

dϕ∗n

t+n−1∫

t−n−1

dtn−1 Φn−1(sn−1,m1,m2, . . . ,mn−1), (2.1)

where ϕ∗n ≡ φ of eq. 1.16 and the limits t±n−1 are given by analytic, albeit complex expres-

sions [17, 19]. Using the above relation one can introduce the X − c̄ particle phase space

– 7 –
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split into equation 1.17 by identifying pc̄ ≡ pn:

dσ(1)(AB → X)

dxadxbdtn−1dsn−1dϕ∗
=

∑

a,b

1

2
√
λ(s,m2

A,m
2
B)xaxb

fa/A(xa, sn−1) fb/B(xb, sn−1)×

×
∫
|M(1)

ab→X |2(xa, xb)
1

4
√
λ(sn,m2

a,m
2
b)
dΦX−c̄ , (2.2)

Using the translation prescriptions introduced above, the remaining issue is the relation of

the variables ξa, ξc, ξb with the variables xa, xb, sn−1. The requirement (2) in the list above

ensures ξa ≡ xa since both particles in question are incoming partons originating in hadron

A. The remaining relations between ξc, ξb and xb, sn−1 are then given by energy and rapidity

conservation requirements. The derived relations are explicitly listed in appendix A.

Combining all the derived rules for kinematic translation one finally obtains a trans-

formation of eq. 1.16:

dσ
(0)
s1 (AB → X)

dxadxbdtn−1dsn−1dϕ∗
=

= J (ξc, ξb)

(sn−1, xb)

dσ
(0)
s1 (AB → X)

dξadξbdµ2dξcdφ

∣∣∣∣∣
ξa→xa, µ2→−(tn−1−m2

c̄), φ→ϕ∗, (ξc,ξb)→(sn−1,xb)

, (2.3)

where J (τ̄ ,ȳ)
(sn−1,xb)

is the Jacobian of the transformation derived in the appendix A.

An issue which deserves special consideration is the prescribed substitution tn−1 −
m2
c̄ = −µ2, where the split particle virtuality µ2 is the propagator virtuality shifted by

the spectator mass m2
c̄ . This prescription differs from the one of Collins [9], where the

relation is directly tn−1 = −µ2 and the spectator (propagator) mass shift is omitted. The

reason for this modification is clear when one notes that the phase space limits [t−n−1, t
+
n−1]

of the tn−1 parameter are functions of sn and invariant masses of the objects (particles)

participating in a t-channel split of wquation 2.1 [17, 19] and thus do not match the simple

limits [m2
c̄ , sn−1] of the virtuality µ2 in the equation 1.16. Indeed, studies have shown that

the presence of the cutoff θ(sn−1 + tn−1) does not provide a sufficient solution since it only

sets the upper integration limit to t+n−1 → −sn−1 while the lower limit t−n−1 can in certain

instances be even smaller than m2
c̄ . The reproduction of a logarithmic term of the collinear

singularity ln
(
µ2
F
m2

)
(eq. 1.12) with µ2

F = µ2
0 = sn−1:

t+n−1∫

t−n−1

θ(sn−1 + tn−1)

tn−1
dtn−1 = ln

(
−sn−1

t−n−1

)
6= ln

(
sn−1

m2
c̄

)
(2.4)

is thus not satisfied in when using tn−1 = −µ2. In order to resolve this issue one needs to

return to the basics of the factorization procedure, where the actual collinear singularity

(i.e. the corresponding logarithmic term) is isolated from the (integrated) hard process

– 8 –
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BP’

−P’
B

P’
A

kT
n−1

θAB

x’

z’

Figure 3: The definition of the reference Collins-Soper frame as the rest frame of the subsystem

sn−1 with the transverse component ~kTn−1 oriented in the x′ − axis direction.

cross-section (for a nice example with massive particles see e.g. [7]) and these logarithmic

terms match with the required collinear logarithm ln
(
µ2
F
m2

)
only in the high sn (hard

center-of-mass) limit. The logarithmic collinear terms can subsequently be traced back to

the propagator integral:

t+n−1∫

t−n−1

dtn−1

tn−1 −m2
c̄

= ln

(
t+n−1 −m2

c̄

t−n−1 −m2
c̄

)
sn →∞−−−−−→ ln

(
sn−1

m2
c̄

)
. (2.5)

The expression of eq. 2.5 is indeed found to match the logarithmic terms of [7] exactly3.

In order to reproduce the collinear cutoff one thus has to put −µ2 = tn−1 − m2
c̄ which,

combined with the factorization cutoff θ(µ2
F −µ2) = θ(sn−1−µ2), reproduces the required

logarithm in the high sn limit:

−(t+n−1−m2
c̄)∫

−(t−n−1−m2
c̄)

θ(sn−1 − µ2)

µ2
dµ2 = ln

(
sn−1

−(t−n−1 −m2
c̄)

)
sn →∞−−−−−→ ln

(
sn−1

m2
c̄

)
. (2.6)

2.2 Monte-Carlo generation steps

A full Monte-Carlo event generation results using the following prescription:

1. Generate the particle momenta and corresponding phase space weight for the n-

particle final state X and compute the full weight corresponding to the process of

eq. 1.17.

3Specifically the expressions of eq. 17, page 14, whereby one has to write down the explicit expressions

for the limits on tn−1 and set the mass of the incoming particle corresponding to the incoming gluon to

zero in order to reproduce the kinematical topology of the process studied in [7].
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2. Re-calculate the kinematic quantities of the n → (n − 1) ⊕ 1 transformation as de-

scribed above.

3. Boost the whole system into the Collins-Soper frame [2] of the n − 1 subsystem,

i.e. the sn−1 center of mass frame where the angle between the boosted hadron mo-

menta P ′A or −P ′B and z′-axis now equals tan( 1
2θAB) = |~kTn−1|/

√
sn−1 = |~pTc̄ |/

√
sn−1

(c.f. figure 3). In other words, this transformation manifestly puts the transverse

contribution due to the induced virtuality into the hadron momenta directed perpen-

dicularly to the z′-axis. One can thus eliminate this virtuality by shifting the hadron

momenta to the z′-axis while preserving the center-of mass energy sn−1.

4. The n−1 (hard) system corresponding to the eq. 1.16 is then achieved by eliminating

the particle c̄ and boosting the remaining particles in the z-axis direction with the

boost value of:

β =
ξc(ξcξbs+m2

b)− ξb(ξcξbs+m2
c)

ξc(ξcξbs+m2
b) + ξb(ξcξbs+m2

c)
(2.7)

in order to restore the sub-system rapidity y.

5. Since boosts do not change the phase space weight the necessary modification consists

of multiplying the phase space weight by:

4
√
λ(sn,m2

a,m
2
b)θ(sn−1 + tn−1)J (ξc, ξb)

(sn−1, xb)
(2.8)

and then obtaining the first subtraction weight by putting the reconstructed momenta

into the eq. 1.16.

6. An analogous procedure can be repeated to obtain the alternate kinematic config-

uration (with the parton evolution of the other incoming particle) and the second

subtraction weight.

7. The final weight, after performing both subtractions is then passed to the event

unweighting procedure.

As Chen, Collins et al. pointed out, [9 – 12], the described procedure of subtraction

is not equivalent to the standard subtraction schemes (e.g. MS) used to obtain the cross-

sections for specific processes (see e.g. [24, 20]) and hence the data-fitted parton distribution

functions with the corresponding evolution kernels (for example the widely used CTEQ5

PDF-s [27]). The relation between the procedure applied derived by Chen, Collins et al.

for the massless case and (with inclusion of parton masses) applied above states that the

correspondence between the MS scheme and the applied JCC scheme is given by relatively

simple relations; an example for the expression of the quark i distribution function involves

a convolution of the gluon g distribution function and the g → iī splitting kernel Pg→īi(z):

z fJCC
i/I (z, µ2) = z fMS

i/I (z, µ2) (2.9)
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+
αs(µ

2)

2π

1∫

z

dξ
z

ξ
fMS
g/I (ξ, µ2)

[
Pg→īi(

z

ξ
) ln

(
1− z

ξ

)
+
z

ξ

(
1− z

ξ

)]

+ O(first-order quark terms) +O(α2
s)

These new distributions can in a reasonably straightforward manner be obtained by nu-

merical integration.

In order to complement the subtracted process one also has to generate a parton-shower

evolved zero-th order process with (n− 1) particles participating in the hard process and

an additional particle added by ’soft’ evolution of the incoming particles. Since one is

interested in the heavy initial state quarks this implies that one has to ’unresolve’ one

of the initial quarks back to a gluon, whereby an additional (anti) quark is added. The

procedure to achieve this is straightforward [9 – 12] and complementary to the procedure

described above, i.e. one has to perform the following steps in the Monte-Carlo algorithm:

1. Generate the particles corresponding to the (n− 1) phase space topology, along with

the momentum fractions ξc and ξb of the incoming particles in the sense of light-cone

components. Consequently, the invariant mass of the hard system is sn−1 and the

rapidity y is given by Equation A.2.

2. Generate a virtuality µ2 of the incoming heavy quark c, a longitudinal splitting

fraction z for the branching of gluon a into the cc̄ pair and an azimuthal angle φ of

the branching system. All the values are sampled from the Sudakov-type distribution:

Sa = exp




−

µ2
0∫

µ2

dµ′2

µ′2
αs(µ

′2)

2π
×

1∫

ξc

dz

z
Pa→c(z)

fa/I(
ξc
z , µ

′2)

fc/I(ξc, µ′2)




. (2.10)

In case there are two quarks in the initial state that can evolve back to gluon and

give the contribution of the same order (like e.g. bb̄→ Z0 process) both virtualities

are sampled and the quark with the higher one is chosen to evolve.

Subsequently, the four-momenta of the participating particles are reconstructed requiring

that the subsystem invariant mass sn−1 and the rapidity y are preserved; the construction is

of course identical to the one used in the n→ (n−1)⊕1 transformation given in section 2.1.

A point to stress is that a kinematic limitation arises on the allowed xa and thus z = ξc
xa

values due to the requirement |~pTc̄ |2 ≥ 0. The latter condition gives the minimal value of

the invariant mass of the n-particle system sn = xaxbs + m2
b (taking into account that one

of the incoming particles is a gluon, ma = 0) with:

(xaxbs)min =
(m2

c + µ2)

2


(sn−1 + µ2 −m2

b)

µ2
+

√
(sn−1 + µ2 −m2

b)
2

µ4
+

4m2
b

µ2


 , (2.11)

which combines with the rapidity y conservation requirement into:

x2
a ≥

(xaxbs)
2
min

(
(xaxbs)min − (m2

c + µ2)
)

s
[
(sn−1 + µ2)e−2y (xaxbs)min −m2

b(m
2
c + µ2)

] . (2.12)
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Figure 4: Representative Feynman diagrams for the Drell-Yan with associated b-quark production

process for (from left to right): Order α
(0)
s , order α

(1)
s and order α

(1)
s subtraction term.

In the massless limit the above expression translates back into the requirement xa ≥ ξc or

equivalently z ≤ 1. In practice (i.e. Monte-Carlo generation) this thus means that a certain

fraction of generated topologies have to be rejected and/or re-generated until the above

conditions are met (or equivalently, that the z (or xa) sampling limits have to be shifted).

3. Examples of the algorithm implementation

Three examples of the procedure described in this paper have been developed: The asso-

ciated Z0b production process and the ’t-channel’ and ’tW-channel’ single top production

processes, both expected to be observed at the LHC. The processes were implemented in

the AcerMC Monte-Carlo generator [18]. Due to the subtraction terms a fraction of event

candidates achieve negative sampling weights and unweighted events are produced with

weight values of ±1 using the standard unweighing procedures.

3.1 Associated Drell-Yan and b-quark production

The (Drell-Yan) lepton pair production associated with one or more heavy quarks repre-

sents an important irreducible background component in the Higgs boson searches at the

LHC. If the Higgs mass is around 130 GeV, then a promising decay channel is H → ZZ ∗ →
4` where Z∗ represents an off shell Z. The production of a lepton pair with one or more

heavy quarks is a background if the heavy quarks decay leptonically. figure 4 shows the

relavent diagrams through order αs; in each case there is a b and b in the event, at order

α0
s both arise as fragements of the incoming beams.

The cross-sections obtained for the leading order process bb̄ → Z → µ+µ−, next-to-

leading order process gb → Zb → µ+µ−b and the subtraction process (g → bb̄)b → Zb →
µ+µ−b in the LHC environment (proton-proton collisions at

√
s = 14 TeV) are given in

the table 1, both for leading order PDF (CTEQ5L [27] was used) and the PDF-s evolved

according to the Collins prescription (c.f. equation 2.10, labeled JCC), along with the

cross-section for the order α
(2)
s gg → Zbb̄ → µ+µ−bb̄ process. Separate cross-section

contributions for the next-to-leading order process and the subtraction term are given

for convenience; in the Monte-Carlo event generation procedure developed in this paper

the events are generated according to the differential cross-section corresponding to the
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Process σCTEQ5L,µ0=mZ
[pb] σJCC,µ0=mZ

[pb]

bb̄→ Z → µ+µ− 57.9 39.9

gb→ Zb→ µ+µ−b 72.1 60.0

(g → bb̄)b→ Zb→ µ+µ−b 73.3 60.9

Σ 56.7 39.0

gg → Zbb̄→ µ+µ−bb̄ 22.8 22.8

Table 1: The process cross-sections for the leading order process bb̄→ Z → µ+µ−, next-to-leading

order process gb → Zb → µ+µ−b and the subtraction process (g → bb̄)b → Zb → µ+µ−b in

the LHC environment (proton-proton collisions at
√

s = 14 TeV) are listed. The b-quark mass is

set to mb = 4.8 GeV and the factorization and renormalization scales are set to the Z0 invariant

mass squared. In addition, the order α
(2)
s gg → Zbb̄ → µ+µ−bb̄ process cross-section is shown for

comparison. The cross-sections are given for the LO CTEQ5L [27] and the derived JCC PDFs. In

the Monte-Carlo event generation procedure the next-to-leading process weights are combined with

the subtraction weights on the event-by-event basis as described in the text.

’hard’ order α
(1)
s process, i.e. the next-to-leading calculation with the subtraction terms

subtracted on an event-by-event basis.

The differential distributions of the virtuality µ and the transverse momentum (pT )

distribution of the b-quark with the highest pT of the two (produced either in the hard

process or in the subsequent Sudakov showering) are shown in figure 5, whereby also the pT
distribution of the b-quark with the highest pT from the order α

(2)
s gg → Zbb̄ → µ+µ−bb̄

process is shown.

In the results in figure 5 one can observe a smooth distribution of the virtuality µ over

the full kinematic range as the result of the implemented matching procedure. It is manifest

that the cutoff on the b-quark virtuality µ and the resulting subtraction contribution do

not map to the pT distribution in a simple way. An interesting result is that the order α
(2)
s

gg → Zbb̄→ µ+µ−bb̄ process pT distribution of the b-quark seems to be quite close to the

result of the merging procedure in the high kinematic range as one could indeed expect if

the perturbative calculations are to be consistent in the perturbative regime. In the low

pT region the gg → Zbb̄ → µ+µ−bb̄ process undershoots the expected distribution of the

merged α
(0)
s ⊕α(1)

s processes which is to be expected since in this case the non-perturbative

contributions prevail. One has to keep in mind when comparing the two results results that

in the derived α
(1)
s calculation the other incoming b-quark is still effectively on-shell, i.e. its

virtuality and branchings are obtained solely from the Sudakov showering, where as in

the α
(2)
s process both incoming b-quarks are treated as propagators in the full perturbative

calculation. A further improvement would certainly be to repeat and extend the procedures

derived in this paper to include the full order α
(2)
s calculation.

From the results one can also see that the use of JCC evolved PDF-s significantly

reduces the cross-section of the leading-order process with respect to the values obtained

using the CTEQ5L [27] PDFs and to a lesser extent the cross-sections of the next-to-leading

and the subtraction contribution, since the latter two include only one b-quark and one

gluon in the initial state and are thus less affected by the change in the b-quark PDF
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Figure 5: The differential distributions of the virtuality µ and the transverse momentum (pT )

distribution of the b-quark with the higher virtuality (produced either in the hard process or in the

subsequent Sudakov showering) are shown for the calculations using the LO CTEQ5L parton density

functions. The next-to-leading order process entries contain the subtraction terms as calculated on

event-by event basis.

evolution.

It is also instructive to compare the results of different approximations of the treatment

of quark masses as shown in the figure 6. In the studies first only the incoming (b-)quark

masses were set to zero and only the kinematic limit of the nominal b-quark mass was

preserved in the showering, as often done in Monte-Carlo generators not taking into account

the incoming quark masses. As one can observe the resulting virtuality and transverse

momentum distributions are steeper, while the total cross-section (area of the distributions)

is only slightly affected. Treating all b-quarks as massless however in this case considerably

reduces the total cross-section and decreases the slope of the given distributions, compared

to the massive treatment as described in this paper. For comparison the results obtained

using the JCC PDF-s are shown; one sees that the total cross-section is substantially

reduced (as also given in the above table); normalised to the same cross-section as the

CTEQ5L evolved resutls the kinematic distributions would, according to the given plot,

result in higher (more pronounced) tails.

3.2 The ’t-channel’ single top production process

The ’t-channel’ single top production mechanism is of importance at the LHC since it

provides a clean signal for top quark and W boson polarization studies. The final state

consist of a t,W , and b as illustrated in figure 7

The cross-sections obtained for the leading order process bq → tq ′, next-to-leading
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Figure 6: The differential distributions of the virtuality µ and the transverse momentum (pT )

distribution of the b-quark with the higher virtuality (produced either in the hard process or in

the subsequent Sudakov showering) are shown for the calculations using the LO CTEQ5L parton

density functions by treating the incoming b-quarks as massless (light grey histogram), all b-quarks

as massless (dashed histogram) and fully massive treatment of b-quarks as described in this paper

(black histogram). For comparison the fully massive treatment using the Collins-evolved (JCC)

parton density functions is shown (bold grey histogram).
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Figure 7: Representative Feynman diagrams for the ’t-channel’ single top production process for

(from left to right): Order α
(0)
s , order α

(1)
s and order α

(1)
s subtraction term.

order process gq → tq′b̄ and the subtraction process (g → bb̄)q → tq′b̄ (and charge con-

jugates) in the LHC environment (proton-proton collisions at
√

s = 14 TeV) are given in

the table 2, both for leading order PDF (CTEQ5L [27] was used) and the PDF-s evolved

according to the Collins prescription (c.f. equation 2.10, labeled JCC) for the scale choices

µ0 = mt and µ0 = 60 GeV. The differential distributions of the virtuality µ and the trans-

verse momentum (pT ) distribution of the b-quark (produced either in the hard process or

in the subsequent Sudakov showering) are shown in figures 8 and 9. Separate cross-section

contributions are given for convenience; in the Monte-Carlo event generation procedure
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Process σCTEQ5L,
µ0=mt

[pb] σ JCC,
µ0=mt

[pb] σ CTEQ5L,
µ0=60 GeV

[pb] σ JCC,
µ0=60 GeV

[pb]

bq → tq′ 222.2 187.8 178.1 138.7

gq → tq′b̄ 156.2 154.2 188.2 184.4

(g → bb̄)q → tq′b̄ 140.1 138.2 102.8 100.5

Σ 238.3 203.8 263.5 222.6

Table 2: The process cross-sections for the leading order process bq → tq′, next-to-leading order

process gq → tq′b̄ and the subtraction process (g → bb̄)q → tq′b̄ (including the charge conjugates)

in the LHC environment (proton-proton collisions at
√

s = 14 TeV) are listed. These inclusive

cross-sections include all top (and W±) decay channels, the b-quark mass is set to mb = 4.8 GeV

and top-quark mass to mt = 175 GeV with the factorization and renormalization scales set to the

top mass values µ0 = mt and µ0 = 60 GeV. The cross-sections are given for the LO CTEQ5L and

JCC PDFs. In the Monte-Carlo event generation procedure the next-to-leading process weights are

combined with the subtraction weights on the event-by-event basis as described in the text.

developed in this paper the gq → tq′b̄ events are generated according to the differential

cross-section corresponding to the ’hard’ order α
(1)
s process, i.e. the next-to-leading calcu-

lation with the subtraction terms subtracted on an event-by-event basis.

From the results in figure 8 and figure 9 one can observe that the applied procedure

produces a very good match of the processes in the combined distribution of the b-quark

virtuality µ resulting in a smooth (almost seamless) transition in the vicinity of the cutoff.

As one can also observe the cutoff on the b-quark virtuality µ and the resulting subtraction

contribution do not map to the pT distribution in a trivial manner; hence one can surmise

that the simple methods involving adding of the processes based on pT distribution cuts

probably give erroneous predictions.

This procedure can in unmodified form be applied to the full 2→ 4 and 2→ 4 matrix

elements bq → tq′ →Wbq′ → f f̄ ′bq and gq → tq′b̄→Wbq′b̄→ f f̄ ′bqb̄ including top quark

decays and has as such also been implemented in the AcerMC Monte-Carlo generator.

One of the interesting results is that the use of JCC evolved PDF-s significantly reduces

the cross-section of the bq → tq′ process with respect to the values obtained using the

CTEQ5L PDFs and to a lesser extent the cross-sections of the gq → tq ′b̄ and the subtraction

contribution, since the latter two contain only the light quarks and gluons which are less

(or in case of gluons not at all) affected by the change in PDF evolution compared to the

b-quark PDF.

A somewhat cruder method of merging different order processes has for the ’t-channel’

single top production already been implemented a while ago in the program ONETOP [28];

the results from the two methods are compatible within the differences of the methods used

in both implementations. It is instructive to understand where the differences between the

two procedures originate. Specifically, in ONETOP the subtraction term is higher than the

cross-section of the (2 → 3) gq → tq′b̄ process; from the figure 3.6 in [28] the subtraction

cross-section of the process (g → bb̄)q → tq′b̄ is of the order of about 190 pb compared to the

140 pb one gets using the procedures described in this paper. The difference originates in

part in the massless approximation of the participating particles implemented in ONETOP
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Figure 8: The differential distributions of the virtuality µ and the transverse momentum (pT )

distribution of the b-quark (produced either in the hard process or in the subsequent Sudakov

showering) are shown for the calculations using the LO CTEQ5L PDFs and the showering (factor-

ization) scale set to µ0 = 60 GeV. The next-to-leading order process entries contain the subtraction

terms as calculated on event-by event basis.

and can be traced back to the fact that the subtraction term in ONETOP (as given in

appendix D in [28]) is calculated from the integrated parton density function correction

(the first-order term in eq. 1.12 of this paper) coupled to the zero-th order bq → tq ′ cross-

section, since the virtuality is already integrated over into the log µ2

m2
b
. In contrast, in the

present work the procedure is more complex and requires identifying the virtuality of the

2 → 3 process in the massive calculation. In addition, in ONETOP the spectator energy

fraction is kept unchanged whereas in the new procedure only the rapidity constraint is

used instead. The ONETOP calculation using the integrated PDF correction has been

repeated as a check and gives a subtraction term with the value of about 185 pb which is

consistent with the ONETOP results.

3.3 The ’tW channel’ single top production process

The ’tW-channel’ single top production mechanism is also of importance at the LHC since

it provides a clean signal for top quark and W boson polarization studies. The process is

illustrated in figure 10.

The cross-sections obtained for the leading order process gb → t(W →)f f̄ ′, next-to-

leading order process gg → t(W →)f f̄ ′b̄ and the subtraction process

(g → bb̄)g → t(W →)f f̄ ′b̄

(and charge conjugates) at the LHC. are given in the table 3, both for leading order PDF

(CTEQ5L [27] was used) and the PDF-s evolved according to the Collins prescription (c.f.
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Figure 9: The differential distributions of the virtuality µ and the transverse momentum (pT )

distribution of the b-quark (produced either in the hard process or in the subsequent Sudakov

showering) are shown for the calculations using the JCC PDFs and the showering (factorization)

scale set to µ0 = mt. The next-to-leading order process entries contain the subtraction terms as

calculated on event-by event basis.
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Figure 10: Representative Feynman diagrams for the ’tW-channel’ single top production process

for (from left to right): Order α
(0)
s , order α

(1)
s and order α

(1)
s subtraction term.

equation 2.10, labeled JCC) for the scale choice µ0 = 60 GeV. The differential distributions

of the virtuality µ and the transverse momentum (pT ) distribution of the b-quark (produced

either in the hard process or in the subsequent Sudakov showering) are shown in the

figure 11 . Separate cross-section contributions are given for convenience; in the Monte-

Carlo event generation procedure developed in this paper the gg → t(W →)f f̄ ′b̄ events are

generated according to the differential cross-section corresponding to the ’hard’ order α
(1)
s

process, i.e. the next-to-leading calculation with the subtraction terms subtracted on an

event-by-event basis. Note also that in this case there are indeed two subtraction terms,

one for each incoming gluon.

From the results in figure 11 one can again observe that the applied procedure produces
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Process σCTEQ5L,µ0=60 GeV [pb] σJCC,µ0=60 GeV [pb]

gb→ t(W →)µν̄µ 5.9 4.7

gg → t(W →)µν̄µb̄ 6.0 6.0

(g → bb̄)g → t(W →)µν̄µb̄ 3.1 3.1

Σ 8.8 7.6

Table 3: The process cross-sections for the leading order process gb→ t(W →)f f̄ ′ , next-to-leading

order process gg → t(W →)f f̄ ′b̄ and the subtraction process (g → bb̄)g → t(W →)f f̄ ′b̄ (including

the charge conjugates) in the LHC environment (proton-proton collisions at
√

s = 14 TeV) are listed.

These inclusive cross-sections include all top decay channels, the associated W± decays into muon

and neutrino and the b-quark mass is set to mb = 4.8 GeV and top-quark mass to mt = 175 GeV

with the factorization and renormalization scales set to the µ0 = 60 GeV. The cross-sections are

given for the LO CTEQ5L and JCC PDFs. In the Monte-Carlo event generation procedure the

next-to-leading process weights are combined with the subtraction weights on the event-by-event

basis as described in the text.

a very good match of the processes in the combined distribution of the b-quark virtuality

µ resulting in a smooth (almost seamless) transition in the vicinity of the cutoff. As

one can also observe the cutoff on the b-quark virtuality µ and the resulting subtraction

contribution do again not map to the pT distribution in a trivial manner; again therefore

one expects that the simple gluing methods of the processes based on pT distribution cuts

most probably give erroneous predictions.

The diagrams of the process gg → tWb→ WWbb̄→ ffffbb̄ are in fact just a subset

of 31 Feynman diagrams which have a WWbb̄ intermediate state (and which also include

the tt̄ production). Accordingly, the derived subtraction procedure has in, AcerMC, been

applied to the processes having the full set of Feynman diagrams and the above plots and

values should be considered only as the validation of the procedure in case of the ’tW

channel’ single top production.

4. Conclusion

It has been demonstrated explicitly how to deal with the case where a particle of interest

can be produced from a partonic hard scattering process or as a remnant of an incoming

hadron beam. Examples of the proceedure have been provided and contrasted with the

more ad-hoc proceedures used previously to prevent double counting.
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A. Kinematic relations

The requirement (2) in the list of subsection 2.1 gives the equivalence ξa ≡ xa. The
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Figure 11: The differential distributions of the virtuality µ and the transverse momentum (pT )

distribution of the b-quark (produced either in the hard process or in the subsequent Sudakov show-

ering) are shown for the calculations using the LO CTEQ5L PDFs and the showering (factorization)

scale set to µ0 = 60 GeV. The next-to-leading order process entries contain the subtraction terms

as calculated on event-by event basis.

remaining relations between ξc, ξb and xb, sn−1 are then given by energy and rapidity

conservation requirements and are thus given by the conditions:

sn−1 = (pc + pb)
2 = m2

c +m2
b + 2(p+

c p
−
b + p−c p

+
b ) = m2

c +m2
b + ξcξbs+

m2
cm

2
b

ξcξbs
(A.1)

where pc = (p+
c ,~0

T , p−c ) = (ξcP
+
A ,
~0T , m2

c

2ξcP
+
A

) and pb = (p+
b ,
~0T , p−b ) = (

m2
b

2ξbP
−
B

,~0T , ξbP
−
B )

and:

y =
1

2
ln

(
k+
n−1

k−n−1

)
=

1

2
ln

(
ξc
ξb

)
+

1

2
ln

(
ξcξbs+m2

b

ξcξbs+m2
c

)
(A.2)

with:
k+
n−1

k−n−1

=

(
1 + β

1− β

)(
k+∗
n−1

k−∗n−1

) (
1 + β

1− β

)
=
xa(xaxbs+m2

b)

xb(xaxbs+m2
a)

(A.3)

and:

k±?n−1 =
1√
2



sn + sn−1 −m2

c̄

2
√
sn

∓
tn−1 −m2

b − sn−1 + 2
(
sn+m2

b−m2
a

2
√
sn

)(
sn+sn−1−m2

c̄
2
√
sn

)

2

(√
λ(sn,m2

a,m
2
b)

2
√
sn

)




(A.4)

which can be inverted to give the expressions for ξc and ξb as functions of sn, xb, . . . A

further simplification in derivation can be achieved by introducing another set of variables
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τ̄ = ξc · ξb and ȳ = 1/2 ln(ξc/ξb) with the Jacobian of the transformation J (ξc,ξb)
(τ̄ ,ȳ) = 1 and

subsequently:

τ̄ =
1

2s

{(
sn−1 − (m2

c +m2
b)
)

+
√
λ(sn−1,m2

c ,m
2
b)

}
, (A.5)

ȳ =
1

2
ln

(
k+
n−1

k−n−1

)
− 1

2
ln

(
τ̄ s+m2

b

τ̄ s+m2
c

)
. (A.6)

As one can observe the τ̄ is only a function of sn−1 so the only remaining term to compute

in the Jacobian of the transformation J (τ̄ ,ȳ)
(sn−1,xb)

is dȳ/dxb:

J (τ̄ , ȳ)

(sn−1, xb)
=

∣∣∣∣
dτ̄

dsn−1

∣∣∣∣ ·
∣∣∣∣
dȳ

dxb

∣∣∣∣ = F(sn, sn−1, tn−1, xa, xb,ma,mb,mc̄) (A.7)

with F being a lengthy function of the listed parameters and therefore omitted. In the

massless approximation the above expression reduces to:

J (ξc, ξb)

(sn−1, xb)m→0

=

∣∣∣∣
xa

2(xaxbs+ tn−1)
+

1

2xbs

∣∣∣∣ (A.8)

which is in agreement with the expressions derived by Chen, Collins et al. [9 – 12]. Analo-

gous expressions can trivially be obtained also for the split of the other parton.
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